On classes of meromorphic or complex harmonic functions with a pole at the infinity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Classes of Salagean type Meromorphic Harmonic Functions

In this paper, a necessary and sufficient coefficient are given for functions in a class of complex valued meromorphic harmonic univalent functions of the form f = h + ḡ using Salagean operator. Furthermore, distortion theorems, extreme points, convolution condition and convex combinations for this family of meromorphic harmonic functions are obtained. Keywords—Harmonic mappings, Meromorphic fu...

متن کامل

Classes of admissible functions associated with certain integral operators applied to meromorphic functions

‎In the present paper‎, ‎by making use of the differential subordination and‎ ‎superordination results of Miller and Mocanu‎, ‎  ‎certain classes of admissible functions ‎are determined so that subordination as well as superordination implications‎ ‎of functions associated with an integral operator hold‎. ‎Additionally‎, ‎differential sandwich-type result is obtained‎.

متن کامل

On convolution properties for some classes of meromorphic functions associated with linear operator

In this paper, we defined two classes $S_{p}^{ast }(n,lambda ,A,B)$ and\ $ K_{p}(n,lambda ,A,B)$ of meromorphic $p-$valent functions associated with a new linear operator. We obtained convolution properties for functions in these classes.

متن کامل

On a Certain Classes of Meromorphic Functions with Positive Coefficients

In this paper certain classes of meromorphic functions in punctured unit disk are defined. Some properties including coefficient inequalities, convolution and other interesting results are investigated.

متن کامل

A Remark on C Infinity-harmonic Functions

In this paper, we prove that any nonconstant, C2 solution of the infinity Laplacian equation uxiuxj uxixj = 0 can not have interior critical points. This result was first proved by Aronsson [2] in two dimensions. When the solution is C4, Evans [6] established a Harnack inequality for |Du|, which implies that non-constant C4 solutions have no interior critical points for any dimension. Our metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Demonstratio Mathematica

سال: 2009

ISSN: 2391-4661

DOI: 10.1515/dema-2013-0186